70Synthesis and Characterization of Mesoporous Alumina with High Surface Area As Support for Catalytic Application


Mesoporous-alumina with high specific surface area was successfully synthesized based on precipitation method. The structural and chemical properties were studied by N2 adsorption–desorption, X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). The mesoporous Al2O3 support had large surface area and high thermal stability. The effect of calcination temperature on alumina surface area was investigated. When the calcination temperature was decreased the surface area increased from82.1 m2/g to 222.05 m2/g.

Keywords: Alumina, mesoporous structure, catalyst support.


  • C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, and J. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” nature, 359, 710-712, 1992.

  • J. Beck, J. Vartuli, W. J. Roth, M. Leonowicz, C. Kresge, K. Schmitt, et al., “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society,  114,  10834-10843, 1992.

  • H. Yang, M. Liu, and J. Ouyang, “Novel synthesis and characterization of nanosized γ-Al 2O3 from kaolin,” Applied Clay Science,  47,  438-443, 2010.

  • X. Jiang, A. Ishizumi, N. Suzuki, M. Naito, and Y. Yamauchi, “Vertically-oriented conjugated polymer arrays in mesoporous alumina via simple drop-casting and appearance of anisotropic photoluminescence,” Chemical Communications,  48,  549-551, 2012.

  • S. M. Grant and M. Jaroniec, “Effect of acid concentration on pore size in polymer-templated mesoporous alumina,” Journal of Materials Chemistry,  22,  86-92, 2012.

  • A. K. Patra, A. Dutta, and A. Bhaumik, “Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water,” Journal of hazardous materials,  201,  170-177, 2012.

  • J. Newnham, K. Mantri, M. H. Amin, J. Tardio, and S. K. Bhargava, “Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane,” international journal of hydrogen energy,  37,  1454-1464, 2012.

  • P. Y. Looi, A. R. Mohamed, and C. T. Tye, “Hydrocracking of residual oil using molybdenum supported over mesoporous alumina as a catalyst,” Chemical Engineering Journal,  181,  717-724, 2012.

  • Z.-X. Li, F.-B. Shi, L.-L. Li, T. Zhang, and C.-H. Yan, “A facile route to ordered mesoporous-alumina-supported catalysts, and their catalytic activities for CO oxidation,” Physical Chemistry Chemical Physics,  13,  2488-2491, 2011.

  • K. Niesz, P. Yang, and G. A. Somorjai, “Sol-gel synthesis of ordered mesoporous alumina,” Chemical communications, 1986-1987, 2005.

  • J. Čejka, “Organized mesoporous alumina: synthesis, structure and potential in catalysis,” Applied Catalysis A: General,  254,  327-338, 2003.

  • X. Li, D. Han, Y. Xu, X. Liu, and Z. Yan, “Bimodal mesoporous γ-Al2O3: A promising support for CoMo-based catalyst in hydrodesulfurization of 4, 6-DMDBT,” Materials Letters,  65,  1765-1767, 2011.

  • K. Parida, A. C. Pradhan, J. Das, and N. Sahu, “Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method,” Materials Chemistry and Physics,  113,  244-248, 2009.

  • W. Cai, J. Yu, and M. Jaroniec, “Template-free synthesis of hierarchical spindle-like γ-AlO materials and their adsorption affinity towards organic and inorganic pollutants in water,” Journal of Materials Chemistry,  20,  4587-4594, 2010.

  • J.-P. Dacquin, J. Dhainaut, D. Duprez, S. Royer, A. F. Lee, and K. Wilson, “An efficient route to highly organized, tunable macroporous− mesoporous alumina,” Journal of the American Chemical Society,  131,  12896-12897, 2009.

  • Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, et al., “Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability,” Journal of the American Chemical Society,  130,  3465-3472, 2008.

  • T. Kim, J. Lian, J. Ma, X. Duan, and W. Zheng, “Morphology controllable synthesis of γ-alumina nanostructures via an ionic liquid-assisted hydrothermal route,” Crystal Growth & Design,  10,  2928-2933, 2010.

  • H. Park, S. H. Yang, Y.-S. Jun, W. H. Hong, and J. K. Kang, “Facile route to synthesize large-mesoporous γ-alumina by room temperature ionic liquids,” Chemistry of materials,  19,  535-542, 2007.