24 Zeolites Synthesis, Catalysis Properties and Applications


* Corresponding Author: Behrooz Roozbehani(Professor.roozbehani@rice.edu)

Abstract:

The latest developments in zeolite synthesis and catalyst applications are reviewed, this review also discusses the current industrial applications of the zeolite catalyst, for example, fluid catalyst cracking, methanol to olefins and conversion of renewable feedstocks. Porous materials containing Lewis-acid metals (e.g., Al, Ga, Sn, B, Ti, Zr) play an important role in the ultimate specifications of the developed materials. Among these, tin and boron-containing zeolites have exhibited better catalytic properties which have mainly been attributed to their crystallinity and hydrophobicity. The focus of this review is to present the advances in the synthesis of zeolite structures in the last decade such as fabrication of zeolites employing microwave energy.

References:

  • [1] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous and Mesoporous Materials, 82 (2005) 1-78.
  • [2] A. Corma, M.E. Davis, Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework‐Density Structures, ChemPhysChem, 5 (2004) 304-313.
  • [3] M. Moliner, C. Martínez, A. Corma, Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis, Chemistry of Materials, 26 (2013) 246-258.
  • [4] M.E. Davis, Ordered porous materials for emerging applications, Nature, 417 (2002) 813.
  • [5] E. Vogt, B. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis, Chemical Society Reviews, 44 (2015) 7342-7370.
  • [6] A. Corma, State of the art and future challenges of zeolites as catalysts, Journal of Catalysis, 216 (2003) 298-312.
  • [7] M. Moliner, C. Martínez, A. Corma, Multipore zeolites: synthesis and catalytic applications, Angewandte Chemie International Edition, 54 (2015) 3560-3579.
  • [8] A. Corma, L.T. Nemeth, M. Renz, S. Valencia, Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations, Nature, 412 (2001) 423.
  • [9] B. Notari, Titanium silicalites, Catalysis Today, 18 (1993) 163-172.
  • [10] H. Li, Y. Wang, C. Fan, C. Sun, X. Wang, C. Wang, X. Zhang, S. Wang, Facile synthesis of a superior MTP catalyst: Hierarchical micro-meso-macroporous ZSM-5 zeolites, Applied Catalysis A: General, 551 (2018) 34-48.
  • [11] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H. Peden, J. Szanyi, Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials, Chemical Society Reviews, 44 (2015) 7371-7405.
  • [12] K.A. Lomachenko, E. Borfecchia, C. Negri, G. Berlier, C. Lamberti, P. Beato, H. Falsig, S. Bordiga, The Cu-CHA deNO x Catalyst in Action: Temperature-Dependent NH3-Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES, Journal of the American Chemical Society, 138 (2016) 12025-12028.
  • [13] P.A. Jacobs, M. Dusselier, B.F. Sels, Will Zeolite‐Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries?, Angewandte Chemie International Edition, 53 (2014) 8621-8626.
  • [14] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B.F. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy & Environmental Science, 6 (2013) 1415-1442.
  • [15] D.M. Alonso, J.Q. Bond, J.A. Dumesic, Catalytic conversion of biomass to biofuels, Green Chemistry, 12 (2010) 1493-1513.
  • [16] M.l. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts, Chemical reviews, 114 (2013) 1827-1870.
  • [17] C.A. Rios, C.D. Williams, M.A. Fullen, Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods, Applied Clay Science, 42 (2009) 446-454.
  • [18] V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R.G. Bell, C.R.A. Catlow, Advances in theory and their application within the field of zeolite chemistry, Chemical Society Reviews, 44 (2015) 7044-7111.
  • [19] Y. Wu, J. Wang, P. Liu, W. Zhang, J. Gu, X. Wang, Framework-substituted lanthanide MCM-22 zeolite: synthesis and characterization, Journal of the American Chemical Society, 132 (2010) 17989-17991.
  • [20] I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: Comparison of activity per Fe-site, Applied Catalysis A: General, 319 (2007) 128-136.
  • [21] J. Jiang, J. Yu, A. Corma, Extra‐large‐pore zeolites: bridging the gap between micro and mesoporous structures, Angewandte Chemie International Edition, 49 (2010) 3120-3145.
  • [22] Y. Kamimura, K. Itabashi, T. Okubo, Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems, Microporous and Mesoporous Materials, 147 (2012) 149-156.
  • [23] B. Xie, H. Zhang, C. Yang, S. Liu, L. Ren, L. Zhang, X. Meng, B. Yilmaz, U. Müller, F.-S. Xiao, Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates, Chemical Communications, 47 (2011) 3945-3947.
  • [24] H. Zhang, C. Yang, L. Zhu, X. Meng, B. Yilmaz, U. Müller, M. Feyen, F.-S. Xiao, Organotemplate-free and seed-directed synthesis of levyne zeolite, Microporous and Mesoporous Materials, 155 (2012) 1-7.
  • [25] G. Li, E. Kikuchi, M. Matsukata, ZSM-5 zeolite membranes prepared from a clear template-free solution, Microporous and mesoporous materials, 60 (2003) 225-235.
  • [26] W. Schwieger, K.-H. Bergk, D. Freude, H. Pfeifer, Synthesis of pentasil zeolites with and without organic templates, ACS Publications1989.
  • [27] R. Szostak, K. Lillerud, M. Stocker, Properties of tschernichite, the aluminum-rich mineral analog of zeolite beta, Journal of Catalysis, 148 (1994) 91-99.
  • [28] C.S. Cundy, Microwave techniques in the synthesis and modification of zeolite catalysts. A review, Collection of Czechoslovak chemical communications, 63 (1998) 1699-1723.
  • [29] J. Jansen, A. Arafat, A. Barakat, H. Van Bekkum, Microwave techniques in zeolite synthesis, Synthesis of Microporous Materials, 1 (1992) 507-521.
  • [30] X. Xu, W. Yang, J. Liu, L. Lin, Synthesis of a high-permeance NaA zeolite membrane by microwave heating, Advanced Materials, 12 (2000) 195-198.
  • [31] R. Van Santen, Theory of Brønsted acidity in zeolites,  Studies in Surface Science and Catalysis, Elsevier1994, pp. 273-294.
  • [32] G. Woolery, G. Kuehl, H. Timken, A. Chester, J. Vartuli, On the nature of framework Brønsted and Lewis acid sites in ZSM-5, Zeolites, 19 (1997) 288-296.
  • [33] J.W. Ward, The nature of active sites on zeolites: I. The decationated Y zeolite, Journal of Catalysis, 9 (1967) 225-236.
  • [34] L. Bui, H. Luo, W.R. Gunther, Y. Román‐Leshkov, Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ‐Valerolactone from Furfural, Angewandte Chemie International Edition, 52 (2013) 8022-8025.
  • [35] R. Osuga, T. Yokoi, K. Doitomi, H. Hirao, J.N. Kondo, Infrared Investigation of Dynamic Behavior of Brønsted Acid Sites on Zeolites at High Temperatures, The Journal of Physical Chemistry C, 121 (2017) 25411-25420.
  • [36] M. Taramasso, G. Perego, B. Notari, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, Google Patents, 1983.
  • [37] S. Saravanamurugan, A. Riisager, Zeolite-catalyzed isomerization of tetroses in aqueous medium, Catalysis Science & Technology, 4 (2014) 3186-3190.
  • [38] W.R. Gunther, Y. Wang, Y. Ji, V.K. Michaelis, S.T. Hunt, R.G. Griffin, Y. Román-Leshkov, Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift, Nature communications, 3 (2012) 1109.
  • [39] J. Jae, E. Mahmoud, R.F. Lobo, D.G. Vlachos, Cascade of Liquid‐Phase Catalytic Transfer Hydrogenation and Etherification of 5‐Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites, ChemCatChem, 6 (2014) 508-513.
  • [40] J.D. Lewis, S. Van de Vyver, A.J. Crisci, W.R. Gunther, V.K. Michaelis, R.G. Griffin, Y. Román‐Leshkov, A Continuous Flow Strategy for the Coupled Transfer Hydrogenation and Etherification of 5‐(Hydroxymethyl) furfural using Lewis Acid Zeolites, ChemSusChem, 7 (2014) 2255-2265.
  • [41] Z. Hu, H. Zhang, L. Wang, H. Zhang, Y. Zhang, H. Xu, W. Shen, Y. Tang, Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction, Catalysis Science & Technology, 4 (2014) 2891-2895.
  • [42] B.M. Weckhuysen, J. Yu, Recent advances in zeolite chemistry and catalysis, Chemical Society Reviews, 44 (2015) 7022-7024.
  • [43] X. Dupain, M. Makkee, J. Moulijn, Optimal conditions in fluid catalytic cracking: A mechanistic approach, Applied Catalysis A: General, 297 (2006) 198-219.
  • [44] W. Haag, R. Dessau, Duality of mechanism for acid-catalyzed paraffin cracking,  Proceedings of the 8th International Congress on Catalysis, Dechema, Berlin, 1984, pp. 305.
  • [45] A. Corma, L. Sauvanaud, FCC testing at bench scale: New units, new processes, new feeds, Catalysis today, 218 (2013) 107-114.
  • [46] C.-Y. Li, L.V. Rees, The thermal stability of faujasites with different SiAl ratios, Zeolites, 6 (1986) 60-65.
  • [47] E.M. Flanigen, H. Khatami, H.A. SZYMANSKI, Infrared structural studies of zeolite frameworks, ACS Publications1971.
  • [48] X. Du, X. Gao, H. Zhang, X. Li, P. Liu, Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites, Catalysis Communications, 35 (2013) 17-22.
  • [49] A. Corma, M. Grande, V. Gonzalez-Alfaro, A. Orchilles, Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite, Journal of catalysis, 159 (1996) 375-382.
  • [50] T. Degnan, G. Chitnis, P.H. Schipper, History of ZSM-5 fluid catalytic cracking additive development at Mobil, Microporous and Mesoporous Materials, 35 (2000) 245-252.
  • [51] J. Biswas, I. Maxwell, Recent process-and catalyst-related developments in fluid catalytic cracking, Applied Catalysis, 63 (1990) 197-258.
  • [52] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chemical reviews, 107 (2007) 2411-2502.
  • [53] P.Y. Dapsens, C. Mondelli, J. Pérez-Ramírez, Biobased chemicals from conception toward industrial reality: lessons learned and to be learned, Acs Catalysis, 2 (2012) 1487-1499.
  • [54] P.Y. Dapsens, C. Mondelli, J. Pérez‐Ramírez, Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid, ChemSusChem, 6 (2013) 831-839.
  • [55] P.Y. Dapsens, C. Mondelli, J. Pérez-Ramírez, Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables, Chemical Society Reviews, 44 (2015) 7025-7043.
  • [56] P.Y. Dapsens, B.T. Kusema, C. Mondelli, J. Pérez-Ramírez, Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates, Journal of Molecular Catalysis A: Chemical, 388 (2014) 141-147.
  • [57] R.O. de Souza, L.S. Miranda, R. Luque, Bio (chemo) technological strategies for biomass conversion into bioethanol and key carboxylic acids, Green Chemistry, 16 (2014) 2386-2405.
  • [58] S.R. Bare, S.D. Kelly, W. Sinkler, J.J. Low, F.S. Modica, S. Valencia, A. Corma, L.T. Nemeth, Uniform catalytic site in Sn-β-Zeolite determined using x-ray absorption fine structure, Journal of the American Chemical Society, 127 (2005) 12924-12932.
  • [59] M. Morales, P.Y. Dapsens, I. Giovinazzo, J. Witte, C. Mondelli, S. Papadokonstantakis, K. Hungerbühler, J. Pérez-Ramírez, Environmental and economic assessment of lactic acid production from glycerol using cascade bio-and chemocatalysis, Energy & Environmental Science, 8 (2015) 558-567.
  • [60] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity, Angewandte Chemie International Edition, 51 (2012) 5810-5831.
  • [61] G. Yang, Y. Wei, S. Xu, J. Chen, J. Li, Z. Liu, J. Yu, R. Xu, Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions, The Journal of Physical Chemistry C, 117 (2013) 8214-8222.
  • [62] I.M. Dahl, H. Mostad, D. Akporiaye, R. Wendelbo, Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts, Microporous and Mesoporous Materials, 29 (1999) 185-190.
  • [63] I.M. Dahl, S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol, Journal of Catalysis, 161 (1996) 304-309.
  • [64] I.M. Dahl, S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol, Journal of Catalysis, 149 (1994) 458-464.
  • [65] F.L. Bleken, S. Chavan, U. Olsbye, M. Boltz, F. Ocampo, B. Louis, Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity, Applied Catalysis A: General, 447 (2012) 178-185.
  • [66] B. Arstad, S. Kolboe, The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction, Journal of the American Chemical Society, 123 (2001) 8137-8138.
  • [67] K.K. Bania, R.C. Deka, Influence of zeolite framework on the structure, properties, and reactivity of cobalt phenanthroline complex: a combined experimental and computational study, The Journal of Physical Chemistry C, 115 (2011) 9601-9607.
  • [68] A. Corma, M. Davis, V. Fornes, V. Gonzalez-Alfaro, R. Lobo, A. Orchilles, Cracking behavior of zeolites with connected 12-and 10-member ring channels: The influence of pore structure on product distribution, Journal of Catalysis, 167 (1997) 438-446.
  • [69] S. Zhang, Y. Gong, L. Zhang, Y. Liu, T. Dou, J. Xu, F. Deng, Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: finely tuning the acidic property, Fuel Processing Technology, 129 (2015) 130-138.
  • [70] C. Mei, P. Wen, Z. Liu, H. Liu, Y. Wang, W. Yang, Z. Xie, W. Hua, Z. Gao, Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5, Journal of Catalysis, 258 (2008) 243-249.
  • [71] S. Teketel, U. Olsbye, K.-P. Lillerud, P. Beato, S. Svelle, Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites, Microporous and Mesoporous Materials, 136 (2010) 33-41.
  • [72] M.W. Erichsen, S. Svelle, U. Olsbye, H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength, Journal of catalysis, 298 (2013) 94-101.
  • [73] M. Bjørgen, S. Akyalcin, U. Olsbye, S. Benard, S. Kolboe, S. Svelle, Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism, Journal of Catalysis, 275 (2010) 170-180.
  • [74] Z.M. Cui, Q. Liu, W.G. Song, L.J. Wan, Insights into the mechanism of methanol‐to‐olefin conversion at zeolites with systematically selected framework structures, Angewandte Chemie International Edition, 45 (2006) 6512-6515.
  • [75] S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes, Journal of the American Chemical Society, 128 (2006) 14770-14771.
  • [76] W. Song, J.F. Haw, J.B. Nicholas, C.S. Heneghan, Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34, Journal of the American Chemical Society, 122 (2000) 10726-10727.
  • [77] M. Stöcker, Methanol-to-hydrocarbons: catalytic materials and their behavior1, Microporous and Mesoporous Materials, 29 (1999) 3-48.
  • [78] X. Sun, S. Mueller, H. Shi, G.L. Haller, M. Sanchez-Sanchez, A.C. van Veen, J.A. Lercher, On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5, Journal of Catalysis, 314 (2014) 21-31.
  • [79] D.R. Dubois, D.L. Obrzut, J. Liu, J. Thundimadathil, P.M. Adekkanattu, J.A. Guin, A. Punnoose, M.S. Seehra, Conversion of methanol to olefins over cobalt-, manganese-and nickel-incorporated SAPO-34 molecular sieves, Fuel Processing Technology, 83 (2003) 203-218.
  • [80] M. Salmasi, S. Fatemi, A.T. Najafabadi, Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates, Journal of Industrial and Engineering Chemistry, 17 (2011) 755-761.
  • [81] Y. Wei, D. Zhang, L. Xu, F. Chang, Y. He, S. Meng, B.-l. Su, Z. Liu, Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins, Catalysis Today, 131 (2008) 262-269.
  • [82] W. Dai, G. Wu, L. Li, N. Guan, M. Hunger, Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts, ACS Catalysis, 3 (2013) 588-596.
  • [83] J. Liu, C. Zhang, Z. Shen, W. Hua, Y. Tang, W. Shen, Y. Yue, H. Xu, Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst, Catalysis Communications, 10 (2009) 1506-1509.
  • [84] R. Dessau, R. LaPierre, On the mechanism of methanol conversion to hydrocarbons over HZSM-5, Journal of Catalysis, 78 (1982) 136-141.
  • [85] A.G. Gayubo, P.L. Benito, A.T. Aguayo, M. Olazar, J. Bilbao, Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons, Journal of Chemical Technology and Biotechnology, 65 (1996) 186-192.
  • [86] A.T. Aguayo, A.G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins, Applied Catalysis A: General, 283 (2005) 197-207.
  • [87] D.M. Bibby, R.F. Howe, G.D. McLellan, Coke formation in high-silica zeolites, Applied Catalysis A: General, 93 (1992) 1-34.
  • [88] M. Firoozi, M. Baghalha, M. Asadi, The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction, Catalysis Communications, 10 (2009) 1582-1585.
  • [89] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Applied Catalysis A: General, 398 (2011) 1-17.