14 Efficient Degradation of Dye Pollutants by Rapid Separable CoFe2O4/ZnO/Ag Nanocomposite


* Corresponding Author: Behrooz Roozbehani(Professor.roozbehani@rice.edu)

Abstract:

          In this work, CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanoparticles were synthesized by co-precipitation and photodeposition methods. The obtained samples were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared, vibrating sample magnetometer, inductively coupled plasma optical emission and UV-Vis diffuse reflectance spectrometry. SEM results confirmed nanosize structure for all samples. Furthermore, the band gap values obtained from DRS technique suggests that all the samples have semiconductor behavior. The photocatalytic behavior of CoFe2O4/ZnO/Ag nanocomposites was appraisement using the degradation of Methylene blue as water pollutant under UV and visible irradiation at room temperature. The CoFe2O4/ZnO/Ag nanocomposites have the preponderance to be completely recoverable with the application of an external magnetic field.

References:

  1. Sathishkumar, P.; Pugazhenthiran, N.; Mangalaraja, R. V.; Asiri, A. M.; Anandan, S., ZnO supported CoFe 2 O 4 nanophotocatalysts for the mineralization of Direct Blue 71 in aqueous environments. Journal of hazardous materials 2013, 252, 171-179.
  2. Asgari, G.; Faradmal, J.; Nasab, H. Z.; Seidmohammadi, A., Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions. Avicenna Journal of Environmental Health Engineering 2014, 1, (1).
  3. Khojasteh, H.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I., Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki-Miyaura Reaction. Journal of Nanostructures 2015, 5, (3), 271-280.
  4. Ye, L.; Yan, C.; Jiang, Y.; Yang, Q.; Lu, C.; Guan, W., Preparation of hollow cone-like ZnO/CoFe2O4 heterostructures and their photocatalytic properties. Micro & Nano Letters 2015, 10, (4), 202-205.
  5. Xu, H.-J.; Wan, X.; Geng, Y.; Xu, X.-L., The Catalytic Application of Recoverable Magnetic Nanoparicles-Supported Organic Compounds. Current Organic Chemistry 2013, 17, (10), 1034-1050.
  6. Baig, R. N.; Varma, R. S., Magnetically retrievable catalysts for organic synthesis. Chemical Communications 2013, 49, (8), 752-770.
  7. Khojasteh, H.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I., Suzuki–Miyaura cross-coupling reaction by palladium immobilized on functionalized magnetic nanoparticles with NNN and NNS Schiff base ligands in a mild reaction condition. Journal of the Iranian Chemical Society, 1-12.
  8. Karimi, Z.; Mohammadifar, Y.; Shokrollahi, H.; Asl, S. K.; Yousefi, G.; Karimi, L., Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. Journal of Magnetism and Magnetic Materials 2014, 361, 150-156.
  9. Qu, Y.; Yang, H.; Yang, N.; Fan, Y.; Zhu, H.; Zou, G., The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe 2 O 4 nanoparticles. Materials Letters 2006, 60, (29), 3548-3552.
  10. Franco, A.; Machado, F. L. A.; Zapf, V. S., Magnetic properties of nanoparticles of cobalt ferrite at high magnetic field. Journal of Applied Physics 2011, 110, (5), 053913.
  11. Gong, X.; Peng, S.; Wen, W.; Sheng, P.; Li, W., Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery. Advanced Functional Materials 2009, 19, (2), 292-297.
  12. Peng, Y.-K.; Lai, C.-W.; Liu, C.-L.; Chen, H.-C.; Hsiao, Y.-H.; Liu, W.-L.; Tang, K.-C.; Chi, Y.; Hsiao, J.-K.; Lim, K.-E., A new and facile method to prepare uniform hollow MnO/functionalized mSiO2 core/shell nanocomposites. ACS nano 2011, 5, (5), 4177-4187.
  13. Wu, X.-F.; Song, H.-Y.; Yoon, J.-M.; Yu, Y.-T.; Chen, Y.-F., Synthesis of core− shell Au@ TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009, 25, (11), 6438-6447.
  14. Zeng, Y.; Zhang, T.; Fu, W.; Yu, Q.; Wang, G.; Zhang, Y.; Sui, Y.; Wang, L.; Shao, C.; Liu, Y., Fabrication and optical properties of large-scale nutlike ZnO microcrystals via a low-temperature hydrothermal route. The Journal of Physical Chemistry C 2009, 113, (19), 8016-8022.
  15. Cano, M.; Sbargoud, K.; Allard, E.; Larpent, C., Magnetic separation of fatty acids with iron oxide nanoparticles and application to extractive deacidification of vegetable oils. Green Chemistry 2012, 14, (6), 1786-1795.
  16. Chi, Y.; Yuan, Q.; Li, Y.; Tu, J.; Zhao, L.; Li, N.; Li, X., Synthesis of Fe 3 O 4@ SiO 2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. Journal of colloid and interface science 2012, 383, (1), 96-102.
  17. Lee, S. H.; Rusakova, I.; Hoffman, D. M.; Jacobson, A. J.; Lee, T. R., Monodisperse SnO2-coated gold nanoparticles are markedly more stable than analogous SiO2-coated gold nanoparticles. ACS applied materials & interfaces 2013, 5, (7), 2479-2484.
  18. Tian, C.; Zhang, Q.; Wu, A.; Jiang, M.; Liang, Z.; Jiang, B.; Fu, H., Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chemical Communications 2012, 48, (23), 2858-2860.
  19. Sarwan, B.; Acharya, A.; Pare, B., Visible light-driven photocatalytic degradation and mineralization of the malachite green dye in a slurry photoreactor. Particulate Science and Technology 2016, 1-7.
  20. Mclaren, A.; Valdes-Solis, T.; Li, G.; Tsang, S. C., Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society 2009, 131, (35), 12540-12541.
  21. Liu, J.; Cheng, J.; Che, R.; Xu, J.; Liu, M.; Liu, Z., Double-shelled yolk–shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. The Journal of Physical Chemistry C 2012, 117, (1), 489-495.
  22. Mohd Adnan, M. A.; Julkapli, N. M.; Abd Hamid, S. B., Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Reviews in Inorganic Chemistry 2016, 36, (2), 77-104.
  23. Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO 2 photocatalysis for CO 2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.
  24. Kuriakose, S.; Choudhary, V.; Satpati, B.; Mohapatra, S., Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method. Beilstein journal of nanotechnology 2014, 5, (1), 639-650.
  25. Kuriakose, S.; Satpati, B.; Mohapatra, S., Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Physical Chemistry Chemical Physics 2015, 17, (38), 25172-25181.
  26. Khojasteh, H.; Salavati-Niasari, M.; Mazhari, M.-P.; Hamadanian, M., Correction: Preparation and characterization of Fe 3 O 4@ SiO 2@ TiO 2@ Pd and Fe 3 O 4@ SiO 2@ TiO 2@ Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation. RSC Advances 2016, 6, (89), 86385-86385.
  27. Zhang, N.; Liu, S.; Fu, X.; Xu, Y.-J., Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity. The Journal of Physical Chemistry C 2011, 115, (18), 9136-9145.
  28. Wang, P.; Xie, T.-F.; Li, H.-Y.; Peng, L.; Zhang, Y.; Wu, T.-S.; Pang, S.; Zhao, Y.-F.; Wang, D.-J., Synthesis and Plasmon-Induced Charge-Transfer Properties of Monodisperse Gold-Doped Titania Microspheres. Chemistry – A European Journal 2009, 15, (17), 4366-4372.