100 Mole Ratio of Eco-Friendly Epoxidation of Citrullus Lanatus (Watermelon) Seeds Oil


Abstract:

The mole ratio of epoxidation of Watermelon seed oil (citrulus lanatus) was studied in situ formed by the reaction of hydrogen peroxide and glacial acetic acid, acting as precursor of peroxy-acetic acid (behave as active oxygen carrier), in the presence of catalyst in inert solvent (maintain the stability of epoxidised product). Choice of catalyst (Amberlite IR-120) got priority as eco-friendly and more effective n terms of oxirane conversion instead of mineral acids i.e. H2SO4 and HNO3. The epoxidation of Watermelon seed (WMSO) oil was proceeded in two main reaction phases via Homogenous & Heterogeneous phase. In heterogeneous phase, reaction starts with the formation of initiator like peroxy-carboxylic acid by excitingly combination of hydrogen peroxide with carboxylic acids (liquid phase) using a catalyst (solid phase). This leads to next step, i.e. combination of peroxy-carboxylic acid (liquid phase) with unsaturated fatty acid (liquid phase) giving homogenous phase reaction. The relative epoxy yield was achieved at 333K (60℃) after 6 hrs when Amberlite IR-120 was taken as 3% of total weight of acetic acid and 30% aqueous H2O2 per mole of double bond in oil.

Keyword: In Situ Epoxidation, Watermelon Seed Oil (WMSO), Acidic ion Exchange Resin, Peroxy-Acetic Acid (PAA), Kinetics.

References:

[1] Koocheki, S.M.A. Razavi*, E. Milani, T.M. Moghadam, M. Abedini, S. Alamatiyan, and S. Izadkhah, Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), P.O. Box. 91775-1163, Mashhad, Iran

[2] Thab Is F. Parreira,MA´ Rciam. C. Ferreira,* Henrique J. S. Sales, andWanderson B. DE Almedia Instituto de Quõ´mica, Universidade Estadual de Campinas, 13083-970, Campinas, S.P., Brazil (T.F.P., M.M.C.F., H.J.S.S.); and Henkel S/A Indu´ strias Quõ´micas, 12300-000, Jacareõ´, S.P., Brazil (H.J.S.S., W.B.A.).

[3] Duduyemi, Oladejo, Adebanjo S.A, Oluoti Kehinde, August 2013,International Journal of Science & Technology research vol.2, issue 8.

[4] Petrovic Z.S., Zlatanic A., Lava C.C. Epoxidation of soya bean oil in toluene with peroxoacetic acid and peroxoformic acids-kinetics and side reactions. European Journal of Lipid Science and Technology 104(5):293-299.5. Okieimen F.E., Bakare O.J. & Okieimen C.O. (2002)

[5] M.H. Shagal*, J.T.Barminas, B.A.Aliyu and S.A. Osemeahon Epoxidation of Ximenia Americana seed oil Department of chemistry, Modibbo Adama University of Technology, P.M.B. Nigeria.

[6] J. Braz. Chem. Soc. vol.22 no.12 São Paulo Dec. 2011.

[7] Luis Alberto Rios aus Medellín, Colombia ,Tag der mündlichen Prüfung: 11. April 2003,M.Sc-Chemisch Ingenieur.

[8] Padmasiri K. Gamage1, Micheal O’Brien1 and Laleen Karunanayake2* 1Epoxidation of some vegetable oils and their hydrolysed products London Metropolitan University, Holloway Road, London N7 8DB, UK. Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Gangodawila, Nugego

[9] Cooney, T.I. *†, Cardona, F. *, & Tran-Cong, T. *(eddBE2011 Proceedings 106 Energy, Environment and Sustainability)

[10] Tayde Saurabh.a*, Patnaik M.b, Bhagt S.L.a, Renge V.C.a epoxidation of vegetable oil review. IJAET/VOL.II/ISSUE

IV/October –December 2011//491-501.

[11] Warren D. Niederhauser and Joseph E. Koroly, Philadelphia, Pa., assignors to Riihm & Haas Company, Philadelphia, Pa., a corporation of Delaware No Drawing. Application October 23, 1948.

[12] Sinadinovic-Fiser, S., Jankovic, M., & Petrovic, Z.S. (2001). Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. Journal of the American Oil Chemists Society, 78(7), 725-731.

[13] Goud, V.V., Pradhan, N.C., & Patwardhan, A.V. (2006). Epoxidation of karanja (Pongamia glabra) oil by Hydrogenperoxide. Journal of the American Oil Chemists Society, 83(7), 635-640.

[14] Ketaren S (2005). Edible oils and fats, Ul-Press, Jakarta.P.145.

[15] Siggia S (1963). Quantitative organic analysis, 3rd edition, John wiley & sons, hic, new york.p. 103.

[16] Angelini et al., 1997; Ncubet al., 1998; Warwel et al., 2004.