172 MCM-41; The First Ordered Mesoporous Material and its Properties, Applications and Different Methods of Modification


  • Corresponding author:professor.roozbehani@rice.edu

Abstract :

In recent years, mesoporous materials especially the ordered ones, which have large surface area, fast adsorption kinetics and controllable pore size and pore arrangement have attracted great attention and have been widely used in a variety of applications.At the first a brief introduction to different classes of porous materials is mentioned but the focus of this review is on the history, synthesis, characterization and different methods of modifying MCM-41 and finally application of MCM-41 in heterogeneous catalysis and catalysis support, separation and adsorption processes and hydrogen storage is mentioned.

References :

[1] Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

[2] Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R.S.; Stucky, G.D.; Krishnamurty, M.; Petroff, P.; Firoouzi, A.; Janicke, M.; Chmelka, B.F. Cooperative formation of inorganic–organic interfaces in the synthesis of silicate mesostructures. Science 1993, 261, 1299–1303.

[3] Karakassides, M.A.; Bourlinos, A.; Petridis, D.; Coche-Guerente, L.; Labbe, P. Synthesis and characterization of copper containing mesoporous silicas. J. Mater. Chem. 2000, 10, 403–408.

[4] Naik, S.P.; Chiang, A.S.T.; Thompson, R.W. Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity. J. Phys. Chem. B 2003, 107, 7006–7014.

[5] Trewyn, B.G.; Slowing, I.I.; Giri, S.; Chen, H.-T.; Lin, V.S.-Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853.

[6] Parida, K.M.; Dash, S.S. Manganese containing MCM-41: Synthesis, characterization and catalytic activity in the oxidation of ethylbenzene. J. Mol. Catal. A 2009, 306, 54–61.

[7] D.H. Everett, IUPAC, Manual of Symbol and Terminology for Physico -chemical Quantities and Units, Appendix, Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part I, Pure Appl. Chem., Vol. 31(4), (1972), p. 579.

[8] IUPAC Manual of symbols and terminology for physicochemical quantities and units, Butterworths, London, 1972.

[9] M.M. Dubinin: “Micropore structures of charcoal adsorbents. 1. A general characterization of micro- and supermicropores in the fissure model”, Proc. Acad. Sci USSR, Vol. 8, (1979), pp. 1691–1696.

[10] P.G. Cheremskoj: Metodi izsleddovania poresti tvurdi tel., Moskwa, Energoatomizdat, 1985 (in Russian).

[11] J. Kodikara, S.L. Barbour and D.G. Fredlund: “Changes in clay structure and behaviour due to wetting and drying”, In: 8th Australian-New Zealand Conference on Geomechanics, Australian Geomechanics, Hobart, Australia, 1999, pp. 179–186.

[12] K.S.W. Sing, D.H. Everett, R.H.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603.

[13] Zhao, X.S.; Lu, G.Q.; Millar, G.J. Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075–2090

[14] Harold, M. P. et al. Catalysis with inorganic membranes. MRS Bull. 19, 34–39 (1994).

[15] Bhave, R. R. Inorganic membranes synthesis, characteristics, and applications (Van Nostrand Reinhold, New York, 1991).

[16] Wu, M. X., Fujiu, T. & Messing, G. L. Synthesis of cellular inorganic materials by foaming sol gels. J. Non-Cryst. Solids 121, 407–412 (1990).

[17] Litovsky, E., Shapiro, M. & Shavit, A. Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials. 2. Refractories and ceramics with porosity exceeding30%. J. Am. Ceram. Soc. 79, 1366–1376 (1996).

[18] Singer, P. Low k dielectrics: the search continues. Semicond. Int. 19, 88–96 (1996).

[19] Clough, T. J. U.S. Patent 5 895 732, 1999.

[20]Wijnhoven, J. E. G. J.; Vos, W. L. Science 1998, 281, 802-804.

[21] Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.;

[22] Velev OD, Jede TA, Lobo RF, Lenhoff AM. Porous silica via colloidal crystallization. Nature 1997;389:447–8. 23.

[23]Holland BT, Blanford CF, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 1998;281:538–40

[24]  Velev OD, Jede TA, Lobo RF, Lenhoff AM. Microstructured porous silica obtained via colloidal crystal templates. Chem Mater1998;10:3597–602

[25] Wijnhoven JEGJ,Vos WL. Preparation of photonic crystals made of air spheres in titania. Science 1998;281:802–4

[26] Holland BT, Blanford CF, Do T, Stein A. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites Chem Mater 1999;11:795–805.

[27] Blanford CF, Do TN, Holland BT, Stein A. Mater Res Soc Symp Proc 1999;549:61–6.

[28]Yin JS, Wang ZL. Template-assisted self-assembly and cobalt doping of ordered mesoporous titania nanostructures. Adv Mater1999.11.469-72.

Mondia, J. P.; Ozin, G. A.; Toader, O.; van Driel, H. M. Nature 2000, 405, 437-440.

[29] Yan H, Blanford CF, Holland BT, Smyrl WH, Stein A. General synthesis of periodic macroporous solids by templated salt precipi tation and chemical conversion. Chem Mater 2000;12:1134–41

[30]  Richel A, Johnson NP, McComb DW. Observation of bragg reflection in photonic crystals synthesized from air spheres in a titania matrix. Appl Phys Lett 2000;76:1816–8.

[31] Vlasov YA, Yao N, Norris DJ. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv Mater1999;11:165–9.

[32] Gundiah G, Rao CNR. Macroporous oxide materials with three- dimensionally interconnected pores. Solid State Sci 2000;2:877–82.

[33] Lei ZB, Li JM, Zhang YG, Lu SM. Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol–gel method. J Mater Chem 2000;10:2629–31.

[34] M.A. Cambler, A. Corma, J. Pereg-Pariente, J. Chem. Soc., Chem. Commun. (1993) 147.

[35] M.L. Occelli, S. Biz, A. Auroux, G.J. Ray, Microporous Mesoporous Mater. 26 (1998) 193.

[36] P.B. Venuto, L.A. Hamilton, P.S. Landis, J. Catal. 5 (1966) 484.

[37] Zakhidov AA, Baughman RH, Iqbal Z, Cui C, Khayrullin I, Dantas SO, Marti J, Ralchenko VG. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998;282:897–901.

[38]  Jiang P, Cizeron J, Bertone JF, Colvin VL. Preparation of macroporous metal films from colloidal crystals. J Am Chem Soc1999;121:7957–8.

[39] Yan H, Blanford CF, Holland BT, Parent M, Smyrl WH, Stein A. index, reactive surface area of the wall, and  mechanical properties. As these synthetic issues are addressed, 3 DOM materials will move closer to desired applications

chemical synthesis of periodic macroporous NiO and metallic Ni. Adv Mater 1999;11:1003–6.

[40] Velev OD, Tessier PM, Lenhoff AM, Kaler EW. A class of porous metallic nanostructures. Nature 1999;401:548.

[41] Kulinowski KM, Jiang P,Vaswani H, ColvinVL. Porous metals from colloidal templates. Adv Mater 2000;12:833–8.

[42]  Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000;405:437–40.

[43] Tessier PM, Velev OD, Kalambur AT, Rabolt JF, Lenhoff AM, Kaler EW. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced raman spectroscopy. J Am Chem Soc 2000;122:9554–5.

[44] Wijnhoven JEGJ, Zenvenhuizen SJM, Hendriks MA, Vanmaekel- bergh D, Kelly JJ, Vos WL. Electrochemical assembly of ordered macropores in gold. Adv Mater 2000;12:888–90.

[45] Tessier PM, Velev OD, Kalambur AT, Lenhoff AM, Rabolt JF, Kaler EW. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv Mater2001;13:396–400.

[46] Yan H, Blanford CF, Smyrl WH, Stein A. Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating. Chem Commun 2000:1477–8.

[47] Mıguez´ H, Meseguer F, Lopez´ C, Holgado M, Andreasen G, Mifsud A, ForneV. Germanium fcc structure from a colloidal crystal template. Langmuir 2000;16:4405–8.

[48] Park SH, Xia Y. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv Mater1998;10:1045–8.

[49] Park SH, Xia Y. Fabrication of three-dimensional macroporous membrane with assemblies of microspheres as templates. Chem Mater 1998;10:1745–7.

[50] Johnson SA, Ollivier PJ, Mallouk TE. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science1999;283:963–5.

[51] Bhatia, Subhash (1989-12-21). Zeolite Catalysts: Principles and applications. CRC Press. ISBN 9780849356285

[52]  Evans, R. J. Phys.: Condens. Matter 1990, 2, 8989.

[53] Q.S. Huo, D.I. Margolese, and G.D. Stucky, Surfactant Control of Phases in the Synthesis of Mesoporous Silica-based Materials, Chem. Mater., 1996, 8, 1147–1160.

[54] J.S. Beck, J.C. Vartuli,W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. J. Am. Chem. Soc., 1992, 114, 10834–10843.

[55] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature (London), 1992, 359, 710–712.

[56] S. Inagaki, Y. Fukushima, and K. Kuroda, Synthesis of Highly Ordered Mesoporous Material from a Layered Polysilicate. J. Chem. Soc., Chem. Commun., 1993, 680–682.

[57] A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B.F. Chmelka, Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science, 1993, 261, 1299–1303.

[58] A. Corma, V. Fornes, M.T. Navarro, and J. Perezpariente, Acidity and Stability of Mcm-41 Crystalline Aluminosilicates. J. Catal., 1994, 148, 569–574.

[59] A. Corma, M.T. Navarro, and J.P. Pariente, Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to Mcm-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbons. J. Chem. Soc. Chem. Commun., 1994, 147–148.

[60] Q.S. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P.Y. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schuth, and G.D. Stucky, Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater., 1994, 6, 1176–1191.

[61] Q.S. Huo, D.I. Margolese, U. Ciesla, P.Y. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth, and G.D. Stucky, Generalized Synthesis of Periodic Surfactant Inorganic Composite Materials. Nature (London), 1994, 368, 317–321.

[62] P.T. Tanev, M. Chibwe, and T.J. Pinnavaia, Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds. Nature (London), 1994, 368, 321–323.

[63] C.G. Wu and T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 1994, 264, 1757–1759.

[64] D.M. Antonelli and J.Y. Ying, Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method, Angew. Chem., Int. Ed. Engl., 1995, 34, 2014–2017.

[65] G.S. Attard, J.C. Glyde, and C.G. Goltner, Liquid-Crystalline Phases as Templates for the Synthesis of Mesoporous Silica. Nature (London), 1995, 378, 366–368.

[66] S.A. Bagshaw, E. Prouzet, and T.J. Pinnavaia, Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995, 269, 1242–1244.

[67] A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A.Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky, and B.F. Chmelka, Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 1995, 267, 1138–1143.

[68] T. Maschmeyer, F. Rey, G. Sankar, and J.M. Thomas, Heterogeneous Catalysts Obtained by Grafting Metallocene Complexes onto Mesoporous Silica. Nature (London), 1995, 378, 159–162.

[69] P.T. Tanev and T.J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 1995, 267, 865–867.

[70] S. Schacht, Q. Huo, I.G. VoigtMartin, G.D. Stucky, and F. Schuth, Oil-Water Interface Templating of Mesoporous Macroscale Structures. Science, 1996, 273, 768–771

[71] H. Yang, N. Coombs, I. Sokolov, and G.A. Ozin, Free-standing and Oriented Mesoporous Silica Films Grown at the Air-Water Interface. Nature (London), 1996, 381, 589–592.

[72] H. Yang, A. Kuperman, N. Coombs, S. MamicheAfara, and G.A. Ozin, Synthesis of Oriented Films of Mesoporous Silica on Mica. Nature (London), 1996, 379, 703–705.

[73] X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, and K.M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports. Science, 1997, 276, 923–926.

[74] M. Kruk, M. Jaroniec, and A. Sayari, Application of Large Pore MCM-41 Molecular Sieves to Improve Pore Size Analysis using Nitrogen Adsorption Measurements. Langmuir., 1997, 13, 6267–6273.

[75] Y.F. Lu, R. Ganguli, C.A. Drewien, M.T. Anderson, C.J. Brinker, W.L. Gong, Y.X. Guo, H. Soyez, B. Dunn, M.H. Huang, and J.I. Zink, Continuous Formation of Supported Cubic and586 Chemistry of Zeolites and Related Porous Materials Hexagonal mesoporous Films by Sol Gel Dip-coating, Nature (London), 1997, 389, 364–368.

[76] H. Yang, N. Coombs, and G.A. Ozin, Morphogenesis of Shapes and Surface Patterns in Mesoporous Silica, Nature (London), 1997, 386, 692–695.

[77] P.D. Yang, T. Deng, D.Y. Zhao, P.Y. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Hierarchically Ordered Oxides, Science, 1998, 282, 2244–2246.

[78] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Generalized Syntheses of Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks, Nature (London), 1998, 396, 152–155.

[79] D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, and G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc., 1998, 120, 6024–6036.

[80] T. Asefa, M.J. MacLachan, N. Coombs, and G.A. Ozin, Periodic Mesoporous Organosilicas with Organic Groups Inside the Channel Walls. Nature (London), 1999, 402, 867–871.

[81] S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in their Frameworks. J. Am. Chem. Soc., 1999, 121, 9611–9614.

[82] S.A. Jenekhe and X.L. Chen, Self-assembly of Ordered Microporous Materials Rod-coil Block Copolymers. Science, 1999, 283, 372–375.

[83] B.J. Melde, B.T. Holland, C.F. Blanford, and A. Stein, Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chem. Mater., 1999, 11, 3302–3308.

[84] R. Ryoo, S.H. Joo, and S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-mediated Structural Transformation, J. Phys. Chem. B, 1999, 103, 7743–7746.

[85] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chem. Mater., 1999, 11, 2813–2826.

[86] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, J. Am. Chem. Soc., 2000, 122, 10712–10713.

[87] S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles, Nature (London), 2001, 412, 169–172.

[88] T. Bein, Synthesis and Application of Molecular Sieve Layers and Membranes. Chem. Mater., 1996, 8, 1636–1653.

[89] N.K. Raman, M.T. Anderson, and C.J. Brinker, Template-based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater., 1996, 8, 1682–1701.

[90] A. Sayari, Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater., 1996, 8, 1840–1852.

[91] X.S. Zhao, G.Q.M. Lu, and G.J. Millar, Advances in Mesoporous Molecular Sieve MCM-41. Ind. Eng. Chem. Res., 1996, 35, 2075–2090.

[92] A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and their Use in Catalysis. Chem. Rev., 1997, 97, 2373–2419.

[93] K. Moller and T. Bein, Inclusion Chemistry in Periodic Mesoporous Hosts. Chem. Mater., 1998, 10, 2950–2963.

[94] T.J. Barton, L.M. Bull,W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, and O.M. Yaghi, Tailored Porous Materials, Chem. Mater., 1999, 11, 2633–2656.

[95] U. Ciesla and F. Schuth, Ordered Mesoporous Materials. Microporous Mesoporous Mater., 1999, 27, 131–149.

[96] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710.

[97] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.E. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834.

[98] Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.

W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L., Journal of the American Chemical Society, 114, 10834 (1992).

[99] Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M., Monson, P. A., Pez, G., Schere, G. W., Vartuli, J. C., Yaghi, O. M., Chemistry of Materials, 11, 2633 (1999).

[100] R. Vargas, P. Mariani, A. Gulik, and V. Luzzati, Cubic Phases of Lipid-Containing Systems – the Structure of Phase-Q223 (Space Group Pm3n) – an X-Ray-Scattering Study. J. Mol. Biol., 1992, 225, 137–145.

[100] Q. Cai,W.Y. Lin, F.S. Xiao,W.Q. Pang, X.H. Chen, and B.S. Zou, The Preparation of Highly Ordered MCM-41 with Extremely Low Surfactant Concentration, Microporous Mesoporous Mater., 1999, 32, 1–15.

[101] Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C.H. Ko, H.J. Shin, and R. Ryoo, TEM Studies of Platinum Nanowires Fabricated in Mesoporous Silica MCM-41. Angew. Chem., Int. Ed., 2000, 39, 3107–3110.

[102] M. Kruk and M. Jaroniec, Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores. Chem. Mater., 2003, 15, 2942–2949.

[103] Price, P. M., Clark, J. H., Macquarrie, D. J., Journal of the Chemical Society, Dalton Transactions, 101 (2000).

[104] A. Vinu, K.Z. Hossain, and K. Ariga, Recent Advances in Functionalization of Mesoporous Silica. J. Nanosci. Nanotechnol., 2005, 5, 347–371.

[105] S. Zheng, L.A. Gao, Q.H. Zhang, and J.K. Guo, Synthesis, Characterization and Photocatalytic Properties of Titania-modified Mesoporous Silicate MCM-41, J. Mater. Chem. 2000, 10, 723–727.

[106]. Jal, P. K., Patel, S.,; Mishra, B. K., Talanta, 62, 1005 (2004).

[107]. Zhao, X. S., Lu, G. Q., J.Phys. Chem. B., 102, 1556 (1998).

[108]. Zhao, X. S., Lu, G. Q.; Whittaker, A. K.; Millar, G. J., Zhu, H. Y., Journal of Physical Chemistry

B, 101, 6525 (1997).

[109] F. de Juan and E. Ruiz-Hitzky, Selective Functionalization of Mesoporous Silica. Adv. Mater., 2000, 12, 430–432.

[110] Burkett, S. L., Sims, S. D., Mann, S., Chemical Communications, 1367 (1996).

[111]. Glen, E. F., Wilaiwan, C., Ryan, D. R., Inorganic Chemistry Communications, 14, 971 (2011).

[112]. Janus, R., Kuoetrowski, P., Dudek, B., Piwowarska, Z., Kochanowski, A., Michalik, M., Cool, P., Microporous and Mesoporous Materials, 145, 65 (2011).

[113]. Idris, S. A., Harvey, S. R., Gibson, L. T. Journal of Hazardous Materials, 193, 171(2011).

[114]. Zhang, J., Shen, Z., Shan, W., Mei, Z., Wang, W. Journal of Hazardous Materials, 186, 76(2011).

[115]. Fu, J., He, Q., Wang, R., Liu, B., Hu, B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 136(2011).

[116]. Jana, S., Bhunia, S., Dutta, B., Koner, S. Applied Catalysis A: General, 392, 225(2011).

[117]. Yasmin, T., Müller, K. Journal of Chromatography A, 1217, 3362(2010).

[118]. Yousefi, S. R., Ahmadi, S. J., Shemirani, F., Jamali, M. R., Salavati-Niasari, M. Talanta, 80, 212(2009).

[119]. Anbia, M., Lashgari, M. Chemical Engineering Journal, 150, 555(2009).

[120]. Kim, M. L., Stripeikis, J. D., Tudino, M. B. Talanta, 77, 1068(2009).

[121]. Zeleòák, V., Badanièová, M., Halamová, D., Èejka, J., Zukal, A., Murafa, N., Goerigk, G. Chemical Engineering Journal, 144, 336(2008).

[122]. Wu, C., Gao, Q., Hu, J., Chen, Z., Shi, W., Microporous and Mesoporous Materials, 117, 165(2009).

[123]. Somanathan, T., Pandurangan, A. Applied Surface Science, 254, 5643(2008).

[124]. Shylesh, S., Samuel, P. P., Singh, A. P. Applied Catalysis A: General, 318, 128(2007).

[125]. Choi, J.-S., Yoon, S.-S., Jang, S.-H., Ahn, W.- S. Catalysis Today, 111, 280(2006).

[126]. Vrålstad, T., Øye, G.; Rønning, M., Glomm, W. R., Stöcker, M., Sjöblom, J. Microporous and Mesoporous Materials, 80, 291(2005).

[127]. Pérez-Quintanilla, D., Sánchez, A., del Hierro, I., Fajardo, M., Sierra, I. Journal of Colloid and Interface Science, 313, 551(2007).

[128]. Soundiressane, T., Selvakumar, S., Ménage, S., Hamelin, O., Fontecave, M., Singh, A. P. Journal of Molecular Catalysis A: Chemical, 270, 132 (2007).

[129]. Singh, U. G., Williams, R. T., Hallam, K. R., Allen, G. C. Solid State Sciences, 7, 1104(2005).

[130]. Kaftan, Ö., Açýkel, M., Eroðlu, A. E., Shahwan, T., Artok, L., Ni, C. Analytica Chimica Acta547, 31(2005).

[131]. Xu, X.; Song, C., Andrésen, J. M., Miller, B. G., Scaroni, A. W. Microporous and Mesoporous Materials, 62, 29(2003).

[132]. Kumar, D., Varma, S., Dey, G. K., Gupta, N. M. Microporous and Mesoporous Materials, 73, 181(2004).

[133]. Štamberg, K., Venkatesan, K. A., Vasudeva o, P. R. Colloids and Surfaces A: Ra Physicochemical and Engineering Aspects, 221, 149(2003).

[134]. Jamali, M. R., Assadi, Y., Shemirani, F., Salavati-Niasari, M. Talanta, 71, 1524(2007).

[135]. Nowak, I., Feliczak, A., Nekoksová, I., Èejka, J. Applied Catalysis A: General, 321, 40(2007).

[136] Choi JS, Kim DJ, Chang SH, Ahn WS. Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions. Appl Catal, A 2003;254(2):225e37.

[137] Gucbilmez Y, Dogu T, Balci S. Vanadium incorporated high surface area MCM-41 catalysts. Catal Today2005;100(3e4):473e7.

[138] Bhattacharyya S, Lelong G, Saboungi ML. Recent progress in the synthesis and selected applications of MCM-41: a short review. J Exp Nanosci 2006;1(3):375e95.

[139] Monash P, Pugazhenthi G. Investigation of equilibrium and kinetic parameters of methylene blue adsorption onto MCM-41. Korean J Chem Eng 2010;27(4):1184e91.

[140] Yun JH, Duren T, Keil FJ, Seaton NA. Adsorption of methane, ethane, and their binary mixtures on MCM-41: experimental evaluation of methods for the prediction of adsorption equilibrium. Langmuir 2002;18(7):2693e701

[141] Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al. A new family of mesoporous molecularsieves prepared with liquid-crystal templates. J Am Chem Soc 1992;114(27):10834e43.

[142] Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature1992;359(6397):710e2.

[143] Ergu¨n AN, Kocabas‚ Z€O, Baysal M, Yu¨ ru¨m A, Yu¨ ru¨m Y. Synthesis of mesoporous MCM-41 materials with low-power microwave heating. Chem Eng Commun2013;200(8):1057e70.

[144] Zhao XS, Lu GQM, Millar GJ. Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res1996;35(7):2075e90

[145] Lee CK, Liu SS, Juang LC, Wang CC, Lin KS, Lyu MD. Application of MCM-41 for dyes removal from wastewater. J Hazard Mater 2007;147(3):997e1005.

[146] Idris SA, Davidson CM, McManamon C, Morris MA, Anderson P, Gibson LT. Large pore diameter MCM-41 and its application for lead removal from aqueous media. J Hazard Mater 2011;185(2e3):898e904.

[147] Sheppard D, Buckley C. Hydrogen adsorption on porous silica. Int J Hydrogen Energy 2008;33(6):1688e92.

[148] Das D, Tsai C-M, Cheng S. Improvement of hydrothermal stability of MCM-41 mesoporous molecular sieve. Chem Commun 1999:473e4.

[149]  Corma, A.; Kumar, D. Possibilities of Mesoporous Materials in Catalysis. Stud. Surf. Sci. Catal. 1998, 117, 201.

[150] Suzuki, N.; Asami, H.; Nakamura, T.; Huhn, T.; Fukuoka, A.; Ichikawa, M.; Saburi, M.; Wakatsuki, Y. Immobilization of a C-2-symmetric Ansa-zirconocene Complex on Silica Surfaces Using a Si-Cl Anchor: Catalysts for Isospecific Propene Polymerization. Chem. Lett. 1999, 4, 341.

[151] Schu¨ th, F. Surface Properties and Catalytic Performance of Novel Mesostructured Oxides. Ber. Bunsen-Ges. Phys. Chem. 1995, 99, 1306.

[152]Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Heterogeneous Catalysts Obtained by Grafting Metallocene Complexes onto Mesoporous Silica. Nature 1995, 378, 159.

[153] Xu, Y.; Langford, C. H. Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y. J. Phys. Chem. 1997, 101, 3115. B

[154] Kloetstra, K. R.; van Bekkum, H. Base and Acid Catalysis by the Alkali-containing MCM-41 Mesoporous Molecular Sieve. J. Chem. Soc., Chem. Commun. 1995, 1005.

[155] Selvam, P.; Badamali, S. K.; Mahalingam, R. J.; Sakthivel, A. Eco-friendly Molecular Sieve Based Heterogeneous Catalysts for Liquid-phase Oxidation of Aromatic Compounds. Abstr., 16th Meet. North Am. Catal. Soc. 1999, PI-011. Ext

[156] Kandavelu, V.; Dhananjeyan, M. R.; Renganathan, R.; Badamali, S. K.; Selvam, P. Photocatalyzed Reaction of Meso- Tetraphenylprophyrin on Mesoporous TiMCM-41 Molecular Sieves. J. Mol. Catal. A 2000, 157, 189.

[157] Sheldon, R. A. Homogeneous catalysts to solid catalysts. Curr. Opin. Solid State Mater. Sci. 1996, 1, 101.

[158] Kim, G. J.; Shin, J. H. The Synthesis of New Chiral Salen Complexes Immobilized on MCM-41 by Grafting and Their Catalytic Activity in the Asymmetric Borohydride Reduction of Ketones. Catal. Lett. 1999, 63, 205.

[159] Badamali, S. K.; Sakthivel; Selvam, P. Tertiary Butylation of Phenol over Mesoporous H-FeMCM-41. Catal. Lett. 2000, 65, 153.

[160] Sakthivel; Badamali, S. K.; Selvam, P. Para-Selective t-Butylation of Phenol over Mesoporous H-AlMCM-41. Microporous Mesoporous Mater. 2000, 39, 457

[161] Corma, A.; Fornes, V.; Navarro, M. T.; Pe´rez-Pariente, J. Acidity and Stability of MCM-41 Crystalline Aluminosilicates. J. Catal. 1994, 148, 569.

[162] Corma, A.; Navarro, M. T.; Pe´rez-Pariente, J. Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbons. J. Chem. Soc., Chem. Commun. 1994, 147.

[163] Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Titaniumcontaining mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368, 321.

[164] Mahalingam, R. J.; Badamali, S. K.; Selvam, P. Oxidation of Phenols over Mesoporous (Cr)MCM-41. Chem. Lett. 1999, 1141.

[165] Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; Pamin, K.; van Bekkum, H. New Acid Catalyst Comprising Heteropoly Acid on a Mesoporous Molecular Sieve MCM-41. Catal. Lett. 1995, 30, 241.

[166] Selvam, P.; Badamali, S. K.; Murugesan, M.; Kuwano, H. Superparamagnetic Particles in Mesoporous FeMCM-41 Molecular Sieves. Recent Trends in Catalysis; Murugesan, V., Arabindo, B., Palanichamy, M., Eds.; Narosa: New Delhi, 1999; p 545.

[167]Long, R.; Yang, R. T. Pt/MCM-41 Catalyst for Selective Reduction of Nitric Oxide with Hydrocarbons in the Presence of Excess Oxygen. Catal. Lett. 1998, 52, 91.

[168] Junges, U.; Jacobs, W.; Giogt-Martin, I.; Krutzsch, B.; Schuth, F. MCM-41 as Support for Small Platinum Particles: A Catalyst for Low-Temperature Carbon Monoxide Oxidation. J Chem. Soc., Chem. Commun. 1995, 2283.

[169]  Corma, A.; Martinez, A.; Martinez-Soria, V.; Monton, J. B. Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst. J. Catal. 1995, 153, 25.

[170] Reddy, K. M.; Wei, B.; Song, C. Mesoporous Molecular Sieve MCM-41 Supported Co-Mo Catalyst for Hydrodesulfurization of Petroleum Resids. Catal. Today 1998, 43, 261.

[171] Bambrough, C. M.; Slade, R. C. T.; Williams, R. T.; Burkett, S. L.; Sims, S. D.; Mann, S. Sorption of Nitrogen, Water Vapor, and Benzene by a Phenyl-Modified MCM-41 Sorbent. J Colloid Interface Sci. 1998, 201, 220.

[172] Branton, P. J.; Hall, P. G.; Sing, K. S. W. Physisorption of Nitrogen and Oxygen by MCM-41, a Model Mesoporous Adsorption. J. Chem. Soc., Chem. Commun. 1993, 1257.

[173] Branton, P. J.; Hall, P. G.; Sing, K. S. W.; Reichert, H.; Schu¨ th, F.; Unger, K. K. Physisorption of Argon, Nitrogen and Oxygen by MCM-41, a Model Mesoporous Adsorbent. J. Chem Soc., Faraday Trans. 1994, 90, 2965.

[174] Branton, P. J.; Hall, P. G.; Sing, K. S. W. Physisorption of Alcohols and Water Vapour by MCM-41 a Model Mesoporous Adsorbent. Adsorption 1995, 1, 77.

[175] Branton, P. J.; Hall, P. G.; Treguer, M.; Sing, K. S. W. Adsorption of Carbon Dioxide, Sulfur Dioxide and Water Vapor by MCM-41, a Model Mesoporous Adsorbent. J. Chem. Soc. Faraday Trans. 1995, 91, 2041.

[176] Branton, P. J.; Sing, K. S. W.; White, J. W. Adsorption of Carbon Tetrachloride and Nitrogen by 3.4 nm Pore Diameter Siliceous MCM-41. J. Chem. Soc., Faraday Trans. 1997, 93, 2337.

[177] Franke, O.; Schulz-Ekloff, G.; Rathousky, J.; Starek, J.; Zukal, A. Unusual Type of Adsorption Isotherm Describing Capillary Condensation without Hysteresis. J. Chem. Soc., Chem Commun. 1993, 724.

[178] Kruk, M.; Jaroniec, M.; Sayari, A. Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes. J. Phys. Chem. B 1997, 101, 583.

[179] Kruk, M.; Jaroniec, M.; Sayari, A. A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas. J. Phys. Chem. B 1999, 103, 4590.

[180] Kruk, M.; Jaroniec, M.; Sayari, A. Relations between Pore Structure Parameters and Their Implications for Characterisation of MCM-41 Using Gas Adsorption and X-ray Diffraction. Chem Mater. 1999, 11, 492.

[181] Morishige, K.; Fujii, H.; Uga, M.; Kinukawa, D. Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene, and Carbon Dioxide in MCM-41. Langmuir 1997, 13, 3494.

[182] Naona, H.; Hakuman, M.; Shiono, T. Analysis of Nitrogen Adsorption Isotherm for a Series of Porous Silicas with Uniform and Cylindrical Pores: A New Method of Calculating Pore Size Distribution of Pore Radius 1-3 nm. J. Colloid Interface Sci. 1997, 186, 360.

[183] Neimark, A. V.; Ravikovitch, P. I.; Unger, K. K. Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption. J. Colloid Interface Sci. 1998, 207, 159

[184] Nguyen, C.; Sonwane, C. G.; Bhatia, S. K.; Do, D. D. Adsorption of Benzene and Ethanol on MCM-41 Materials. Langmuir1998, 14, 4950.

[185] Rathousky, J.; Zukul, A.; Franke, O.; Schulz-Ekloff, G. Adsorption on MCM-41 Mesoporous Molecular Sieves Part 1. Nitrogen Isotherms and Parameters of the Porous Structure. J Chem. Soc., Faraday Trans. 1994, 90, 2821.

[186] Rathousky, J.; Zukul, A.; Franke, O.; Schulz-Ekloff, G. Adsorption on MCM-41 Mesoporous Molecular Sieves, Part 2. Cyclopentane Isotherm and Their Temperature Dependence. Chem. Soc., Faraday Trans. 1995, 91, 937.

[187] Dahl, I. M.; Myhrvold, E.; Slagtern, A.; Stocker, M. Adsorption of Lower Alcohols from Water Solutions on High Silica Zeolites, Mesoporous MCM-41 and AlPO4-5. Adsorpt. Sci. Technol. 1997, 15, 289.

[188]Gru¨n, M.; Kurganov, A. A.; Schacht, S.; Schu¨ th, F.; Unger, K. K. Comparison of an Ordered Mesoporous Aluminosilicate, Silica, Alumina, Titania and Zirconia in Normal-Phase High- Performance Liquid Chromatography. J. Chromatogr. A 1996, 740,

[189] Gru¨n, M.; Lauer, I.; Unger, K. K. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 1997, 9, 254. Ind. Eng. Chem. Res., Vol. 40, No. 15, 2001 3257

[190] Raimondo, M.; Sinibaldi, P. M.; De Stefanis, A.; Tomlinson, A. A. G. Mesoporous M41S Materials in Capillary Gas Chromatogaraphy. Chem. Commun. 1997, 1343.

[191] Xu, Y. M.; Wang, R. S.; Wu, F. Surface Characters and Adsorption Behavior of Pb(II) onto a Mesoporous Titanosilicate Molecular Sieve. J. Colloid Interface Sci. 1999, 209, 380.

[192] Wilson, E. Coated Mesoporous Silica: Supersoaker for Heavy Metals. Chem. Eng. News 1997, 5, 46.

[193] Mercier, L.; Pinnavaia, T. J. Access in Mesoporous Materials: Advantages of a Uniform Pore Structure in the Design of a Heavy Metal Ion Adsorbent for Environmental Remediation. Adv. Mater. 1997, 9, 500

[194] Feng, X.; Fryxell, F. E.; Wang, I. Q.; Kim, A.; Liu, J.; Kemnere, K. M. Functionalized monolayers on ordered mesoporous supports. Science 1997, 276, 923.

[195] Brown, J.; Richer, R.; Mercier, L. One-Step Synthesis of High-Capacity Mesoporous Hg2+ Adsorbents by Nonionic Surfactant Assembly. Microporous Mesoporous Mater. 2000, 37, 41.

[196] Weitkamp J, Fritz M, Ernst S. Zeolites as media for hydrogen storage. Int J Hydrogen Energy 1995;20(12):967e70.

[197] Beyaz Kayiran S, Lamari Darkrim F. Synthesis and ionic exchanges of zeolites for gas adsorption. Surf Interface Anal2002;34(1):100e4.

[198] Nijkamp MG, Raaymakers JEMJ, van Dillen AJ, de Jong KP. Hydrogen storage using physisorption e materials demands. Appl Phys A Mater Sci Process 2001;72(5):619e23.

[199] Sheppard D, Buckley C. Hydrogen adsorption on porous silica. Int J Hydrogen Energy 2008;33(6):1688e92.

[200] Edler KJ, Reynolds PA, Branton PJ, Trouw FR, White JW. Structure and dynamics of hydrogen sorption in mesoporous MCM-41. J Chem Soc Faraday T 1997;93(8):1667e74.

[201] Ramachandran S, Ha J-H, Kim DK. Hydrogen storage characteristics of metal oxide doped Al-MCM-41 mesoporous materials. Catal Commun 2007;8(12):1934e8.

[202] Park SJ, Lee SY. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. J colloid interface Sci2010;346(1):194e8.

[203] van den Berg AWC, Are_an CO. Materials for hydrogen storage: current research trends and perspectives. Chem Commun 2008;(6):668.

[204] Wu C, Gao Q, Hu J, Chen Z, Shi W. Rapid preparation, characterization and hydrogen storage properties of pure and metal ions doped mesoporous MCM-41. Micropor Mesopor Mat 2009;117(1e2):165e9.

[205] Du¨ ndar-Tekkaya E, Yu¨ ru¨m Y. Effect of loading bimetallic mixture of Ni and Pd on hydrogen storage capacity of MCM-41. Int J Hydrogen Energy 2015;40(24):7636e43.

[206] Li J, Wu E. Storage of hydrogen in zeolites. In: Andreyev MK, Zubkov OL, editors. Zeolites: synthesis, Chemistry and applications; 2012.

[207] Prasanth KP, Raj MC, Bajaj HC, Kim TH, Jasra RV. Hydrogen sorption in transition metal modified mesoporous materials. Int J Hydrogen Energy 2010;35(6):2351e60.

[208] Carraro P, Elı´as V, Blanco AAG, Sapag K, Eimer G, Oliva M. Study of hydrogen adsorption properties on MCM-41 mesoporous materials modified with nickel. Int J Hydrogen Energy 2014;39(16):8749e53.

[209] Sh. Khademi, B. Roozbehani , M.S Wong, M. Hamadanian, Zeolites Synthesis, Catalysis Properties and Applications, American Journal of Oil and Chemical Technologies. 24 (2018).